Contribution of Scalar Coupling Pathway in the Relaxation of Germane and Tetrahalogermanes Toshie HARAZONO, Katsumi TANAKA, Yoshito TAKEUCHI,* and Norihiro KAKIMOTO+ Department of Chemistry, College of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153 *ASAI Germanium Research Institute, Komae, Tokyo 201 73 Ge relaxation in GeH₄, GeCl₄, and GeBr₄, and ¹H relaxation in GeH₄ have been studied, and found to contain a scalar coupling mechanism in a spin-spin relaxation. Furthermore, a scalar spin coupling constant, $J(^{73}$ Ge - 35 Cl) = 24Hz, was obtained. Magnetic relaxation of nuclei of group IVB elements with I = 1/2(i.e., 13 C, 29 Si, 119 Sn, and 207 Pb) has been extensively investigated. Thus, it has been shown that in $\text{CCl}_4^{\,1)}$ and $\text{SnCl}_4^{\,2)}$ the spin-lattice relaxation of 13 C and 119 Sn are solely via spin-rotation mechanism, and in such tetrahalides as SnBr_4 , $^{3)}$ SnI_4 , $^{2)}$ and PbCl_4 , $^{4)}$ the spin-lattice relaxation of 119 Sn or 207 Pb occurs via a combination of two mechanisms , i.e., spin-rotation and scalar coupling, while the spin-spin relaxation of these nuclei in the above tetrahalides occurs solely via scalar coupling mechanism. Furthermore, in $\text{Sn}(\text{CH}_3)_4^{\,5)}$ and $\text{Pb}(\text{CH}_3)_4^{\,5)}$ 119 Sn and 207 Pb spin-lattice relaxations were dominated by the spin-rotation mechanism. On the contrary, only a limited amount of informations is available on the relaxation of 73 Ge nuclei mostly because of the difficulties of measurement associated with their electric quadrupole moment with I = 9/2. It was shown that 73 Ge spin-lattice relaxation in $\text{Ge}(\text{CH}_3)_4$ and $\text{Ge}(\text{C}_2\text{H}_5)_4$ were predominated by the quadrupole relaxation because a plot of $\ln(1/\text{T}_1)$ vs. 1/T (T is the absolute temperature(K)) gave a straight line with a positive slope. The quadrupole relaxation was also found to be the main relaxation pathway of 73 Ge nuclei Table 1. 73 Ge and 1 H relaxation data for germanium compounds and coupling constant, J(Ge-H), in germane at 303 K^{9}) | | 73 _{Ge} | | 1 _H | | | |-------------------|------------------|-----|----------------|----------------|---------| | | ^T 1 | т2 | ^T 1 | T ₂ | J(Ge-H) | | | ms | ms | s | s | Hz | | GeH ₄ | 570 | 320 | 65 | 12 | 97.7 | | ${\tt GeCl}_4$ | 280 | 120 | | | | | GeBr ₄ | 160 | 130 | | | | of $Ge(C_4H_9)_4$ and other tetraalkyl germanes.⁷⁾ Since a contribution of scalar coupling has been detected in the relaxation of other IVB elements when the nuclei are bonded to halogens, a similar contribution may be detected in the relaxation of 73 Ge nucleus bonded to halogens or to any other nuclei which spin-couple with germanium. With this in mind, we determined the 73 Ge and 1 H(when appropriate) spin-lattice relaxation times(T_1) and spin-spin relaxation times(T_2) of GeH₄, GeCl₄, and GeBr₄ at various temperatures. T_1 and T_2 were determined by the inversion-recovery and Carr-Purcell-Meiboom-Gill methods, respectively, 8) with a JEOL FX-90Q spectrometer at 3.10 MHz(73 Ge) and 89.56 MHz(1 H). The data at 303 K are tabulated in Table 1, which indicate that T_2 are generally shorter than T_1 in both 73 Ge and 1 H resonances. A plot of $\ln(1/T_1)(^{73}\text{Ge})$ of GeCl_4 against 1/T(Fig. 1a) gave a straight line (R=0.999) with a positive slope which indicates that the spin-lattice relaxation of ^{73}Ge is predominantly via quadrupole mechanism. On the other hand, a plot of $\ln(1/T_2)$ of GeCl_4 against $1/\operatorname{T}(\operatorname{Fig.}\ 1b)$ gave a concave curve with a minimum, which is an evidence that at least two pathways with a different temperature dependency were involved, while the plot of $\ln(1/T_2-1/T_1)$ against $1/\operatorname{T}(\operatorname{Fig.}\ 1c)$ gave a straight line(R=0.979) with a negative slope. On the contrary, for GeH_4 , the similar procedure(Fig. 2) gave straight lines with a positive slope for $ln(1/T_2-1/T_1)$ vs. 1/T (R=0.973; Fig. 2c). These observations can be explained in a following manner. Generally speaking, the contribution of scalar coupling is observed for the relaxation of nuclei which are bonded to such quadrupole nuclei as 35 (or 37)Cl or 79 (or 81)Br, or which spin-couple with other nuclei. 10 , 11) Chemistry Letters, 1986 When 1 + $$(\omega_{I} - \omega_{S})^{2} \tau_{SC}^{2} \rightarrow 1$$, where $\omega_{\rm I}$ and $\omega_{\rm S}$ are the resonance frequencies of nuclei I(in this case Ge) and S(nucleus bonded to Ge), respectively, and $\tau_{\rm SC}$ is the correlation time of scalar coupling, the difference between 1/T₁ and 1/T₂ is given by: $$1/T_2 - 1/T_1 = (2\pi J)^2 I_S (I_S + 1) \tau_{sc} N_s / 3$$ where J is the spin-spin coupling constant, \mathbf{I}_S is the nuclear spin of the nucleus S and \mathbf{N}_S is the number of nucleus S. When $(2\pi J) \leftrightarrow 1/T_1$ or $1/T_2$, τ_{SC} is equal to T_1 of nucleus $S.^{10,11}$) Since it is reported that T_2 of ^{35}Cl of GeCl_4 is 4.1×10^{-5} s, 12) the above requirement is fulfilled for the relaxation of germanium in GeCl_4 . Since $1/T_1$ of ^{35}Cl is predominantly quadrupole pathway, and hence proportional to τ_C (rotational correlation time), the plot of $\ln(1/T_2-1/T_1)$ of germanium relaxation vs. 1/T should be a straight line with a negative slope which is in line with the experimental results. By substituting τ_{SC} with T_2 of ^{35}Cl of GeCl_4 in the above equation, the scalar spin coupling constant, $J(^{73}\text{Ge-}^{35}\text{Cl})=24$ Hz is calculated. In the case of GeH₄, $(2\pi J) \rightarrow 1/T_1$, which is contrary to the case of GeCl₄, and similar to such cases as ¹³CH₃I and ¹³CH₃COOCD₃. ¹³) The plot of $\ln(1/T_2)$ of germanium relaxation vs. 1/T is a straight line with a positive slope. Temperature dependency of this kind is also observed for the slow chemical exchange $(\tau_{SC} = \tau_{ex})$, where τ_{ex} is the chemical exchange time). ¹⁰, ¹¹) Thus, when the line-broadening is essentially governed by the chemical exchange, the plot of $\ln(\tau_{ex})$ vs. 1/T gives a straight line with a positive slope. In conclusion, to the best of our knowledge we have experimentally first demonstrated that a significant contribution of scalar coupling pathway is operative in the 73 Ge and 1 H spin-spin relaxation of such highly symmetric germanes as GeH₄ or GeCl₄. Fig.1. Plots of $ln(1/T_1)$, $ln(1/T_2)$, and $ln(1/T_2-1/T_1)$ of 73 Ge vs. 1/T in tetrachlorogermane. $O: ln(1/T_2)$; \bullet : ln(1/T₁), R=0.999; \blacksquare : ln(1/T₂ -1/T₁), R=0.979. Fig.2. Plots of $ln(1/T_1)$, $ln(1/T_2)$, and $ln(1/T_2-1/T_1)$ of 73 Ge vs. 1/T in germane. $O: ln(1/T_2)$ R=0.973; \bullet : ln(1/T₁),R=0.973; \blacksquare : ln(1/T₂-1/T₁), R=0.973. ## References - K. T. Gillen, J. H. Noggle, and T. K. Leipert, Chem. Phys. Lett., 17, 505(1972). - 2) R. R. Sharp, J. Chem. Phys., <u>57</u>, 5321(1972). - 3) R. R. Sharp, J. Chem. Phys., 60, 1149(1974). - 4) R. M. Hawk and R. R. Sharp, J. Chem. Phys., 60, 1009(1974). - 5) C. R. Lessigne and E. J. Wells, J. Magn. Reson., 26, 55(1977). - 6) Y. Takeuchi, T. Harazono, and N. Kakimoto, Inorg. Chem., <u>23</u>, 3835(1984). - 7) I. P. Sekatsis, É. É. Liepin'sh, I. A. Zitsmane, and É. Lukevits, Zh. Obshch. Khim., <u>53</u>, 2964(1984). - 8) From various measurements the accuracy of relaxation times is estimated to be within +5%. - 9) The samples of $GeCl_4$ and $GeBr_4$ are in $CDCl_3$ (1:1) and that of GeH_4 is a saturated solution in CD_3COCD_3 . The samples were degassed by the freeze-thaw method. - 10) A. Abragam, "The Principles of Nuclear Magnetism," Clarendon, London (1961). - 11) T. C. Farrar and E. D. Becker, "Pulse and Fourier Transform NMR. Introduction to Theory and Methods," Academic Press, New York and London (1971). - 12) K. J. Johnson, J. P. Hunt, and H. W. Dodgen, J. Chem. Phys., 51, 4493(1969). - 13) R. R. Shoup and D. L. VanderHart, J. Am. Chem. Soc., <u>93</u>, 2053(1971). (Received July 21, 1986)